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A B S T R A C T

The deck cross-section is usually identified in engineering practice as the most important design variable in the
wind-resistant design of long-span bridges. This is certainly true in most cases since it controls the aerodynamic
and mechanical contribution of the deck to the global bridge performance. However, the effectiveness of deck
shape modifications to handle the aeroelastic constraints is highly influenced by the aeroelastic performance
requirements. This paper seeks to delve into the aero-structural design optimization of long-span bridges by
analyzing possible design scenarios depending on the ability of the deck shape to meet the imposed aeroelastic
requirements. A long-span cable-stayed bridge is optimized focusing on the buffeting response and considering
different sets of limit values for the design constraints. According to the effectiveness of the deck shape design
variables and other size design variables to manage the aeroelastic design constraints, three types of aero-
structural optimization problems are identified: type I, aeroelastic constraints are not active and structural
constraints drive the design; type II, aeroelastic constraints are active and effectively controlled by deck shape
modifications; and type III, aeroelastic constraints are active and demand both shape and size modifications.
The engineering significance for practical design is discussed.
. Introduction

Structural optimization has been possible since the 1960s, when
ptimization theory, structural analysis, and computer hardware were
ntegrated, giving rise to what was defined in those days as structural
ynthesis (Schmit [1,2]). Later, in the 1970s, gradient-based optimiza-
ion algorithms were applied for the first time to the aerodynamic
hape optimization of aircraft wings (Hicks et al. [3] and Hicks and
enne [4]). This technique has been further developed in the aerospace

esearch field and industry to the present day, and a large amount
f research has been published dealing with both aerodynamic shape
ptimization (Reuther et al. [5] and Lyu et al. [6]) and aero-structural
hape optimization (Martins et al. [7] and Jasa et al. [8]) of aircraft
ings.

Despite the positive environmental and economic impact of struc-
ural optimization (Lagaros [9]), the application of computational de-
ign techniques in wind engineering is still in the developmental phase,
ut it has been gaining momentum (Kareem [10]). In recent years,
esearch about aerodynamic shape optimization was developed for tall
uildings (Bernardini et al. [11], Elshaer et al. [12] and Ding and
areem [13]), high-speed trains (Li et al. [14] and Muñoz Paniagua
nd García [15]), and barriers for windblown sand mitigation (Horvat
t al. [16]).

∗ Corresponding author.
E-mail addresses: miguel.cidmontoya@tamucc.edu (M. Cid Montoya), hernandez@udc.es (S. Hernández), kareem@nd.edu (A. Kareem).

In the bridge engineering field, the application of structural op-
timization approaches is scarce and primarily confined to research
activities. It is difficult to find existing civil structures whose design
has been conducted using optimization algorithms. One example is a
300 m footbridge built on the campus of the University of Aveiro,
Portugal, where the location of the nodes of its truss beam was defined
by an optimization algorithm (Azevedo et al. [17]). In the case of
cable-supported bridges, the first applications at the research level
of structural synthesis were carried out in the 1990s by Simões and
Negrão [18], optimizing different elements of a cable-stayed bridge
considering design constraints related to gravitational loads. Later,
Baldomir et al. [19] presented a formulation for the estimation of
the optimum prestressing forces of the stays of a cable-stayed bridge
without inner loops in the optimization process, which allows the ef-
ficient optimization of the cable supporting system. The determination
of optimum cable forces is an important design task that affects the
overall design of the bridge, and several authors have contributed to
this topic thus far, e.g. Hassan et al. [20]. Further developments in the
optimization of cable supporting systems and bridge deck designs con-
sidering structural constraints have addressed the specific challenges
of each bridge typology. Interesting contributions can be found in
Lonetti and Pascuzzo [21], which deals with the optimum design of
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hybrid cable-stayed suspension bridges, Fabbrocino et al. [22], which
carries out a pre-tensioning optimization of lattice structures forming
composite cable-stayed bridges, and Arellano et al. [23], where the
design optimization of criss-cross cables was addressed, among many
others.

Furthermore, multidisciplinary optimization approaches were de-
veloped in order to include design constraints different from the clas-
sical behavior constraints related to structural responses under grav-
itational loads. For instance, the first application of optimum design
taking into account hazardous phenomena was reported by Simões
and Negrão [24], considering earthquake-related design constraints.
Later applications adopting dampers to mitigate earthquake effects
were authored by Ferreira and Simões [25]. In recent contributions
by Ferreira and Simões [26], the dynamic lock-in phenomenon caused
by pedestrian loading in footbridges has been considered in the op-
timization problem. A comprehensive review of cable-stayed bridge
optimization can be found in Martins et al. [27].

Focusing on the aeroelastic phenomena (Larsen and Larose [28]),
the first contribution to the gradient-based aeroelastic design of bridges
was developed by Jurado and Hernández [29] in the 2000s. Sensi-
tivity analyses provided the qualitative and quantitative relationships
between flutter response and several mechanical properties, such as the
positive effect of augmenting the torsional inertia to increase the flutter
speed. This was carried out taking advantage of the advances in the
multi-mode flutter analyses of bridges developed in the 1990s by Agar
[30] and Katsuchi et al. [31]. Later, some other investigations deepened
in this approach, conducting further sensitivity analyses or parameter
variation studies to ascertain the influence of relevant parameters of
the bridge on its flutter velocity (see, for instance, Zhang [32] and
Argentini et al. [33]).

Nevertheless, the first contribution reporting the optimization of
a long-span bridge including an aeroelastic design constraint was the
paper by Nieto et al. [34], where kinematic and flutter constraints were
considered to optimize the size of the deck plates thicknesses of the
Messina Bridge project. Later, in the recent investigations by Kusano
et al. [35], this approach has been extended to have into account the
inherent uncertainties in the identification of the flutter derivatives
(see Sarkar et al. [36]), leading to the formulation of a probabilistic
aeroelastic optimization problem.

However, in the aforementioned research studies, the girder geom-
etry, which is one of the most important aspects in aeroelastic design,
was not adopted as a shape design variable, constraining the ability of
the optimization algorithm to effectively improve the design. This issue
was addressed in the authors’ previous contributions (Cid Montoya
et al. [37] and Cid Montoya et al. [38]), focusing on flutter-resistant
design. The core idea was to develop an alternative approach to the
classical design process of long-span bridges (see Chen and Duan [39])
aiming at achieving more efficient designs taking into account wind-
induced effects. In Cid Montoya et al. [37], a fully numerical procedure
was developed by combining CFD simulations with surrogate models,
and estimating the aeroelastic loads acting on streamlined bridge decks
by taking advantage of the quasi-steady (QS) formulation (Scanlan [40]
and Chen and Kareem [41]). This methodology enabled the numerical
assessment of the bridge flutter velocity as a function of the deck shape.
Validated results showed the impact of the fairing angle, which was
controlled by the width of the single-box deck cross-section, on the
deck aerodynamics and the bridge flutter speed. Later, in Cid Montoya
et al. [38], the formulation for the aero-structural shape optimization
problem considering flutter was presented and successfully applied. The
combined design demands of structural and flutter requirements high-
lighted the importance of the deck depth given its positive contribution
to the bridge stiffness without worsening the aeroelastic characteristics
in the considered design domain.

Long-span bridges need to be safe enough to withstand any relevant
wind induced effect. Accordingly, this paper addresses the performance
2

of bridges under buffeting (Hui et al. [42], Zasso et al. [43] and
Lystad et al. [44]). This aeroelastic phenomenon caused by the inherent
turbulence in the flow field affects the bridge’s performance throughout
its service life. Buffeting-induced accelerations on the deck can cause
instability of vehicles or discomfort to pedestrians (ISO 2631 [45]),
which is a serviceability limit state, and stress and fatigue damages
(Zhu et al. [46] and Repetto and Torrielli [47]), which are ultimate
limit states. These responses are usually managed by designers by
setting thresholds to the lateral, vertical, and torsional accelerations at
several control points along the bridge deck for several wind velocities
to address different scenarios (Stretto di Messina [48]). This leads to
the consideration of a large number of responses that may require
contradictory modifications in the buffeting-resistant design, in contrast
to the flutter-resistant design where the only response to handle is the
critical wind speed. The long-term goal of this research effort is to
further develop an aero-structural optimization framework including
not only these two phenomena but also vortex-induced vibrations (VIV)
(Larsen and Poulin [49] and Diana et al. [50]), which also needs to be
analyzed against being overstressed and fatigue strength on the deck
members, and aerostatic stability (Boonyapinyo et al. [51]), which is
an aerodynamic instability that can be a more restrictive ultimate limit
state than flutter (Nagai et al. [52]).

It must be remarked the importance of adopting an adequate formu-
lation for the aero-structural optimization problem in bridge design. In
several engineering fields, the aerodynamic shape optimization prob-
lem is commonly formulated as a minimization of the aerodynamic
loads. Applications can be found in multiple disciplines, such as in road
vehicles (Muyl et al. [53]), where different parts of the car shape are
optimized seeking the reduction of the drag, high-speed trains (Muñoz
Paniagua and García [15]), where the shape of the head is optimized
to minimize the drag and lift when running in the open air and the
pressure pulse of two trains passing by, and tall buildings (Bernardini
et al. [11], Mooneghi and Kargarmoakhar [54] and Elshaer et al.
[12]), where the building cross-section shape is optimized to minimize
the drag. These contributions demonstrated the effectiveness of shape
optimization techniques to minimize the aerodynamic loads. On the
contrary, in the field of wind energy generation, such as wind turbines
design, the goal is to maximize the aerodynamic performance, or more
specifically, the energy production (Chehouri et al. [55]). In aerospace
engineering, the classic wing aerodynamic shape optimization problem
seeks the minimization of the drag subject to some constraints which
also involve the lift and moment coefficients (see, for instance, Hicks
and Henne [4], Lyu et al. [6] and Skinner and Zare-Behtash [56]). In
aircraft aero-structural shape optimization frameworks, the objective
function also includes the weight of the structure (Martins et al. [7]).

On the other hand, according to Martins et al. [27], pure structural
optimization frameworks for cable-stayed bridges have mainly focused
on two key topics: (1) ‘‘cable-forces optimization’’, and (2) ‘‘optimum
design’’ aiming at minimizing the cost of the bridge. A comprehensive
aero-structural shape optimization framework for the design of cable-
stayed bridges should address these two goals but also consider the
aeroelastic phenomena affecting the bridge performance. Hence, the
aeroelastic responses should be formulated in the bridge engineering
field as they are considered in real projects. As it can be seen, for
instance, in the specifications for the Messina Strait Bridge (Stretto di
Messina [48]), the aeroelastic responses are limited by imposing spe-
cific thresholds. Therefore, they must be considered in the optimization
problem as design constraints adopting as limit values the thresholds
set in each particular project. Depending on the limit values adopted,
the wind conditions at the bridge location, and the bridge design,
the aeroelastic constraints can play either an active or passive role in
the design process, which would result in different optimum designs.
Moreover, the sensitivity of the aeroelastic responses with the deck
shape will determine the capability of the deck shape design variables
to act as effective passive countermeasures to achieve safe designs.
These two aspects will impact the optimization outcome and their

influence on the optimum deck shape must be further investigated.
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This study addresses the aero-structural optimization problem of
long-span bridges considering shape and size design variables in the
deck cross-section, and size variables in the cable-supporting system.
This set of design variables permits the control of both deck aerodynam-
ics and its stiffness and mass contribution to the global bridge proper-
ties, as well as the stiffness contribution of the cable-supporting system.
The importance of these factors for controlling the aeroelastic perfor-
mance was summarized by Larsen and Larose [28] as ‘‘Aeroelasticity
is roughly 20% aero- and 80% elasticity ’’ to highlight the importance of
the structural dynamics contribution to the aeroelastic response. On the
other hand, the structural and aeroelastic performances, particularly
buffeting accelerations, are considered design constraints. The impact
of the limits adopted for the aeroelastic constraints on the optimum
deck shape, as well as the capability of the deck shape design variables
to mitigate these aeroelastic responses, are investigated. While this
study is carried out in the frame of optimization problems, the concepts
developed from this research can be generalized for wind-resistant
design problems involving shape design variables.

The methodology for the buffeting-resistant aero-structural shape
design of bridge decks was presented and formulated in a previous
contribution (Cid Montoya et al. [57]), including the description of
the surrogate model, CFD simulations, and buffeting analysis. The
wind load model was formulated and its applicability for the design
of long-span bridges was discussed based on measured flutter deriva-
tives. Furthermore, parametric studies were conducted to investigate
the relationship between the buffeting response of a single-box deck
cable-stayed bridge and deck shape-dependent properties, such as deck
stiffness, mass, and aerodynamics. It was found that the width of the
deck, which controls the fairing angle and consequently the influential
𝜒∗
𝐷𝑤, 𝜒∗

𝐿𝑤 and 𝜒∗
𝑀𝑤 admittance functions, is very effective to mitigate

he RMS of torsional and vertical accelerations of the bridge. Increasing
he deck width leads to a decrease in the vertical response in exchange
or increasing the torsional acceleration, while decreasing the deck
idth diminishes the torsional response. Hence, buffeting-resistant de-

ign entails taking trade-off decisions while considering the specific
esign parameters of each project. This makes optimization algorithms
powerful tool for addressing these challenges in the preliminary de-

ign stages of long-span bridges. In the present article, the methodology
or the aero-structural shape optimization is conceptually introduced in
ection 2, and the formulation is later developed in Section 3, where
he specific characteristics of buffeting-resistant design optimization are
ddressed. The long-span cable-stayed bridge with a streamlined single-
ox deck cross-section used as an application example is described
n Section 4. In Section 5, the buffeting responses of the optimum
tructural designs at the four wind velocities under study are pre-
ented along with shape parametric studies. Result are compared to the
hresholds imposed for each wind velocity. This advances the results
nd design conclusions learned from parametric studies in previous
nvestigations, since the relationship between the design variables and
he buffeting responses are obtained after the design has been polished.
his information is instrumental for the adequate interpretation of the
ptimum designs obtained in the frame of the complete aero-structural
ptimization of the bridge, which are reported in Section 6. Finally,
he influence of the chosen set of aeroelastic design constraints on the
ptimum aero-structural design is discussed, leading to the definition
f three types of aero-structural optimization problems depending on
he behavior of the deck shape design variables. The validity of this
lassification is analyzed using the results of this study as well as the
lutter-resistant optimization previously carried out in Cid Montoya
t al. [38]

. Aero-structural optimization framework considering shape and
ize design variables

This section describes the numerical framework that permits the
ormulation of an optimization problem aiming at obtaining the opti-
3

um bridge deck shape and plates’ size design, along with the optimal
cable supporting system. The goal is to achieve sustainable, economical,
and safe designs by minimizing the weight of the structure while
accomplishing all the design constraints, including those related to
gravitational loads and those related to buffeting-induced responses.
In this context, the numerical evaluation of all the structural and
aeroelastic responses of the bridge is a cardinal requirement. For this
reason, this investigation takes advantage of the numerical procedure
developed in Cid Montoya et al. [57] for the evaluation of the buffeting
response of long-span bridges within a numerical design framework.

The first step to carry out the aero-structural optimization (Fig. 1) is
the proper definition of the problem including the objective function,
design variables (initial design and ranges of variation), design con-
straints, and design parameters (e.g. wind modeling). This conditions
the following two steps, which are the construction of a parametrized
finite element model (FEM), and a validated aerodynamic surrogate
model (ASM). In the first case, the FEM will be responsible for pro-
viding for any combination of input design variables the required
output, which includes displacements and stress responses for multiple
control points and load cases, as well as modal data for the multi-mode
aeroelastic analyses. In the second case, the ASM will have as input
the deck shape design variables that control the deck aerodynamics,
and the output will be the aerodynamic parameters required to obtain
the aeroelastic responses. The construction of the ASM is conditioned
by the definition of the problem, particularly by the lower and upper
bound of the shape design variables, which define the shape design
domain. Then, a sampling plan is carried out to set the designs that
will be evaluated by means of CFD simulations to train the surrogate
model. It must be remarked the importance of experimental validation
and time and space verification of the CFD simulations to guarantee the
accuracy of the surrogate model.

Once the FEM and ASM are available, the optimization framework
can be developed by implementing a numerical scheme able to produce
all the structural (e.g. kinematic and stress responses related to self-
weight and service loads) and aeroelastic responses (e.g. buffeting
accelerations) required in the formulation of the design constraints
(output) for each set of design variables proposed by the optimization
algorithm (input). This is defined in Fig. 1 as Bridge Multidisciplinary
Analysis (BMA). First, a set of static analyses using the finite element
model (FEM) of the full bridge are conducted for each gravitational
load case. These can include self-weight and traffic service loads, and
the responses are usually of kinematic and stress nature. Second, the
procedure for obtaining the buffeting responses must be implemented,
as shown in Fig. 1. This involves solving the eigenvalues problem
using the FEM of the full bridge to obtain the natural frequencies
and mode shapes. Then, taking advantage of the ASM and the quasi-
steady formulation (Scanlan [40], Chen and Kareem [41] and Kavrakov
and Morgenthal [58]), the aeroelastic self-excited and buffeting forces
acting on streamlined bridge decks can be obtained from the ap-
proximated flutter derivatives and admittance functions. Then, the
buffeting responses can be assessed by solving the multi-mode buffeting
analysis using the information previously obtained and the specific
wind model defined for the project under study. In this manner, all
the responses required are available, providing the algorithm with
all the required information to iteratively improve the design until
reaching convergence. It must be highlighted that the independence of
most of the procedures included in the BMA allows the application of
parallel computing to reduce the computation burden. While this study
is focused on the buffeting-resistant design of long-span bridges, the
methodology is very versatile and can be further extended to include
additional design constraints. Future investigations will address the
aero-structural optimization problem considering additional aeroelastic
responses, such as VIV and nonlinear aerostatic stability, by suitably

extending the BMA to obtain the required responses.
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Fig. 1. Flowchart of the methodology for carrying out the aero-structural optimization. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
3. Formulation of the aero-structural optimization problem

The aero-structural optimization of long-span bridges can be for-
mulated as a constrained optimization problem where the objective
function 𝐹 (𝐱) is the property of the bridge to be minimized, com-
monly a sustainability or economical cost related quantity such as
the weight or volume of the structure. The objective function de-
pends on a set of design variables 𝐱, which are the properties of
the bridge that the optimization algorithm can modify to achieve
4

its goal. This problem is subject to lateral constraints (𝐱𝑚𝑖𝑛 ≤ 𝐱 ≤
𝐱𝑚𝑎𝑥), which establish the range of variation enabled for each design
variable; and also to a number of design constraints (𝑔𝑖 (𝐱) < 0, 𝑖 =
1...𝑚), which are the structural and aeroelastic performance require-
ments to be fulfilled by candidate designs. Since the responses of the
bridge belong to different disciplines, this problem can be labeled as
a multidisciplinary optimization problem (Martins and Lambe [59]).
The formulation adopted to conduct the aero-structural optimization
is posed to be solved using gradient-based optimization algorithms.
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.

Fig. 2. Layout of the bridge FEM.

The optimization algorithm used is Sequential Quadratic Programming
(SQP). The objective function is formulated as:

min𝐹 (𝐱) = min𝐹 (𝐵,𝐻, 𝑡,𝐀,𝐍) = min

(

𝐴𝑥 (𝐵,𝐻, 𝑡)𝐿𝐷 + 𝑃𝑠

𝑛𝑠
∑

𝑖=1
𝐴𝑖𝐿𝑠,𝑖

)

,

(1)

where the set of design variables 𝐱 consists of the deck shape variables
(the width 𝐵 and the depth 𝐻 of the deck cross-section), the deck
plate thickness 𝑡, and the stays cross-section areas 𝐀 = |

|

|

𝐴1,… , 𝐴𝑛𝑠
|

|

|

,
and prestressing forces 𝐍 = |

|

|

𝑁1,… , 𝑁𝑛𝑠
|

|

|

, where 𝑛𝑠 is the number of
stays. 𝑃𝑠 is the number of planes of stays, which in the case of long-span
bridges is commonly 2. In this manner, the objective function provides
the volume of the deck and stays, which is the quantity to minimize.
The structural and aeroelastic constraints (𝑔𝑖 (𝐱) < 0) are the following:

1. Maximum displacements allowed in the deck and tower under
self weight (𝑆𝑊 ). These limits are applied to the vertical dis-
placements of the deck 𝑤𝐷 and the horizontal displacements of
the top of the towers 𝑢𝑇 . These constraints are formulated as:

𝑔𝑤
𝐷 , 𝑆𝑊

𝑑 (𝐱) =
𝑤𝐷,𝑆𝑊

𝑑

𝑤𝐷,𝑆𝑊
max

− 1 ≤ 0, 𝑑 = 1,… , 𝑛𝑑 , (2)

𝑔𝑢
𝑇 , 𝑆𝑊

𝑡 (𝐱) =
𝑢𝑇 , 𝑆𝑊𝑡

𝑢𝑇 , 𝑆𝑊max
− 1 ≤ 0, 𝑡 = 1,… , 𝑛𝑡, (3)

where 𝑔𝑤
𝐷 , 𝑆𝑊

𝑑 (𝐱) are the constraints imposed to the vertical
displacements of the center of the deck at the 𝑛𝑑 longitudinal
locations of the stays’ anchorages at the deck, and 𝑔𝑢

𝑇 , 𝑆𝑊
𝑡 (𝐱)

are the 𝑛𝑡 constraints for the horizontal displacements of the top
of the towers at points 𝑡. These constraints are established to
obtain the prestressing forces during the optimization process,
as developed in Baldomir et al. [19].

2. Maximum displacements allowed in the deck and towers under
different distributions 𝐿𝑙 of 𝑛𝑙 live loads. The formulation of
these constraints, which are imposed in the same control points
5

Table 1
Natural frequencies and modal shapes for the initial and optimum structural design
considering the baseline G1 deck cross-section (initial deck shape design).
Φ shapea Initial design Optimum design (G1)

Mode # 𝑓𝑛,0 [Hz] Mode # 𝑓 ∗
𝑛 [Hz]

L1s 1 0.082 1 0.080
Towers & L2a 2 0.154 2 0.155
Towers & L1s 3 0.155 3 0.155
Long. 4 0.194 4 0.198
V1s 5 0.203 5 0.213
L2a 6 0.231 6 0.232
V2a 7 0.255 7 0.242
V3s 8 0.351 8 0.349
V4al 9 0.411 9 0.354
L3s & T1s 10 0.419 11b 0.414
V5sc 11 0.438 10b 0.367
T1s 12 0.461 12 0.449
L4al 13 0.489 14b 0.490
V4a 14 0.496 13b 0.474
V5s 15 0.518 15 0.490
L3s & T1s 16 0.533 16 0.530
V7sd 17 0.622 18b 0.578
V6a 18 0.631 17b 0.569
V7sl 19 0.682 19 0.597
L4s & T2a 20 0.700 21b 0.696
V6al 21 0.705 20b 0.637
Towers & L3s 22 0.726 22 0.724

aL = lateral, V = vertical, T = torsional, # = number of half-waves in the mode shape
of the main span, s = symmetric shape, a = asymmetric shape, & = combination of
shapes, l = strong vertical displacement in the side spans. The modes with higher
influence on the buffeting responses are indicated in bolt.
bThis mode has a different position on the frequency list with regards to the initial
design of the bridge.
cThe shape of the optimum design is ‘‘V5s’’ although the first and fifth half-waves are
almost inappreciable in Fig. 4.
dThe shape of the initial design is ‘‘V5s’’ and the shape of the optimum design is ‘‘V7s’’,
as shown in Fig. 4.

Table 2
Summary of maximum acceleration limits for buffeting response found in
the literature. Values of RMS of accelerations in m∕s2. The torsional accelerations are
expressed as the equivalent vertical accelerations of the deck according to 𝑍𝑒𝑞 = 𝜃 ⋅𝐵∕2

Source 𝑈 range [m/s] �̈�𝑅𝑀𝑆,𝑚𝑎𝑥 �̈�𝑅𝑀𝑆,𝑚𝑎𝑥 �̈�𝑒𝑞,𝑅𝑀𝑆,𝑚𝑎𝑥

Stretto di Messina [48] [5 − 40] 0.150 0.250 0.125
[40 −∞] 0.300 0.500 0.250

ISO 2631 [45] [0 − 15] 0.200 0.200 0.200
[15 −∞] 0.500 0.500 0.500

and degree-of-freedom (DoF) used in Eqs. (2) and (3), can be
written as:

𝑔𝑤
𝐷 , 𝐿𝑙

𝑑 (𝐱) =
𝑤𝐷,𝐿𝑙

𝑑

𝑤𝐷,𝐿𝑙
max

− 1 ≤ 0, 𝑑 = 1,… , 𝑛𝑑 , 𝑙 = 1,… , 𝑛𝑙 , (4)

𝑔𝑢
𝑇 , 𝐿𝑙

𝑡 (𝐱) =
𝑢𝑇 , 𝐿𝑙
𝑡
𝑇 , 𝐿𝑙

− 1 ≤ 0, 𝑡 = 1,… , 𝑛𝑡, 𝑙 = 1,… , 𝑛𝑙 . (5)

𝑢max
Fig. 3. Baseline G1 Scanlan’s cross-section and the deck shape variables 𝛿𝐵 and 𝛿𝐻 .
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Fig. 4. Mode shapes of the deck normalized to displacements of the optimum structural design considering the G1 cross-section. Torsional DoF of the modes are expressed as
𝑍𝑒𝑞 = 𝜃 ⋅ 𝐵∕2. Natural frequencies and modes numeration can be found in Table 1. The location of the towers is indicated by a gray line and the center of the main span can be
identified by a dashed gray line.

Fig. 5. Response surfaces of a subset of relevant properties on the optimum shape space ∗: (a) objective function 𝐹 (Eq. (1)), (b) deck plate thickness 𝑡, (c) structural mass
moment 𝐼𝑆

𝑀 , (d) natural frequency of mode #1, (e) natural frequency of mode #11, and (f) natural frequency of mode #12 (see Table 1).

Fig. 6. BARS for the optimum designs in ∗ at wind speed 𝑈 = 45m∕s in terms of RMS of accelerations at midspan in m∕s2. The torsional accelerations are expressed as the
equivalent vertical accelerations of the deck according to 𝑍𝑒𝑞 = 𝜃 ⋅ 𝐵∕2.
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Table 3
Initial values (𝐱0), lower bounds (𝐱min), and upper bounds (𝐱max) of the design variables
(𝐱) considered for the aero-structural shape optimization, which are the deck width 𝐵
and depth 𝐻 , the deck thickness 𝑡, the area of the stays 𝐀 (this includes the backstays
area 𝐀𝐵 and the area of the other stays 𝐀𝑠) and the prestressing forces of the stays 𝐍

Type Design variable # variables 𝐱0 𝐱min 𝐱max

Shape 𝐵 [m] 1 40.0 36.0 44.0
𝐻 [m] 1 5.6 5.04 6.16

Size
𝑡 [cm] 1 2.5 1.0 3.0
𝐀𝐵 [m2] 2 0.5 0.0033 1.0
𝐀𝑠 [m2] 38 0.05 0.0033 1.0

Other 𝐍 [MPa] 40 300 0.0 800a

aThis value is directly conditioned by Eqs. (8) and (9).

3. Maximum normal stresses allowed at the top and bottom fibers
of the deck cross section for the 𝑛𝑙 distributions of the live loads.
The constraints are given by:

𝑔𝜎
𝑇𝐹 , 𝐿𝑙

𝑘 (𝐱) =
𝜎𝑇𝐹 ,𝐿𝑙
𝑘

𝜎𝑇𝐹 ,𝐿𝑙
max

− 1 ≤ 0, 𝑘 = 1,… , 𝑛𝑘, 𝑙 = 1,… , 𝑛𝑙 , (6)

𝑔𝜎
𝐵𝐹 , 𝐿𝑙

𝑘 (𝐱) =
𝜎𝐵𝐹 ,𝐿𝑙
𝑘

𝜎𝐵𝐹 ,𝐿𝑙
max

− 1 ≤ 0, 𝑘 = 1,… , 𝑛𝑘, 𝑙 = 1,… , 𝑛𝑙 , (7)

where 𝑛𝑘 is the number of control points along the deck at which
this design constraint is evaluated, 𝜎𝑇𝐹 is the stress at the top
fiber of the deck cross-section and 𝜎𝐵𝐹 represents the stress at
the deck bottom fiber. These values can be obtained from the
deck axial load and bending moments in a FEM based on beam
and bar elements.

4. Maximum normal stress allowed in the stays for the live loads
and self-weight load case. This constraint is applied to the 𝑛𝑠
stays for each load case (𝑆𝑊 and 𝐿𝑙), and is written as:

𝑔𝜎
𝑠 , 𝐿𝑙

𝑖 (𝐱) =
𝜎𝑠, 𝐿𝑙
𝑖

𝜎𝑠, 𝐿𝑙
max

− 1 ≤ 0, 𝑖 = 1,… , 𝑛𝑠, 𝑙 = 1,… , 𝑛𝑙 , (8)

𝑔𝜎
𝑠 , 𝑆𝑊

𝑖 (𝐱) =
𝜎𝑠, 𝑆𝑊𝑖

𝜎𝑠, 𝑆𝑊max
− 1 ≤ 0, 𝑖 = 1,… , 𝑛𝑠, (9)

where 𝜎𝑠𝑖 is the stress at each stay 𝑖, including the backstays.
5. Maximum allowed RMS of accelerations along the deck due to

buffeting loads. The 𝑛𝑗 buffeting control points are uniformly
distributed along the deck. These constraints must be formulated
for all the 𝑛ℎ wind velocities considered and the three DoF as:

𝑔�̈�𝑅𝑀𝑆 (𝐱) =
�̈�𝑈ℎ
𝑅𝑀𝑆,𝑗

�̈�𝑈ℎ
𝑅𝑀𝑆,𝑗,𝑚𝑎𝑥

− 1 ≤ 0, 𝑗 = 1,… , 𝑛𝑗 , ℎ = 1,… , 𝑛ℎ,

(10)

𝑔�̈�𝑅𝑀𝑆 (𝐱) =
�̈�𝑈ℎ

𝑅𝑀𝑆,𝑗

�̈�𝑈ℎ
𝑅𝑀𝑆,𝑗,𝑚𝑎𝑥

− 1 ≤ 0, 𝑗 = 1,… , 𝑛𝑗 , ℎ = 1,… , 𝑛ℎ,

(11)

𝑔�̈�𝑅𝑀𝑆 (𝐱) =
�̈�𝑈ℎ
𝑅𝑀𝑆,𝑗

�̈�𝑈ℎ
𝑅𝑀𝑆,𝑗,𝑚𝑎𝑥

− 1 ≤ 0, 𝑗 = 1,… , 𝑛𝑗 , ℎ = 1,… , 𝑛ℎ,

(12)

where �̈�𝑈ℎ
𝑅𝑀𝑆,𝑗 , �̈�

𝑈ℎ
𝑅𝑀𝑆,𝑗 and �̈�𝑈ℎ

𝑅𝑀𝑆,𝑗 are the RMS of lateral, vertical
and torsional accelerations of the bridge deck, respectively, ob-
tained following the procedure described in Section 2 and using
the multi-mode frequency domain approach (Scanlan [60] and
7

Diana et al. [61]). It must be noted that while in flutter-resistant
design optimization frameworks the aeroelastic response is lim-
ited by the minimum flutter velocity, here the threshold is the
maximum allowed RMS of accelerations for each DoF, control
point, and wind velocity (�̈�𝑈ℎ

𝑅𝑀𝑆,𝑗,𝑚𝑎𝑥, �̈�𝑈ℎ
𝑅𝑀𝑆,𝑗,𝑚𝑎𝑥 and �̈�𝑈ℎ

𝑅𝑀𝑆,𝑗,𝑚𝑎𝑥),
leading to a relevant number of aeroelastic design constraints.

The maximum values adopted as bounds for each constraint are
identified with the subindex 𝑚𝑎𝑥. The values taken for those limits,
which are based on codes and/or engineering practice criteria, are
provided in Section 6.1. The design variables associated with the stays’
cross-sections areas take the values of the inverse areas of the stays
(1∕𝐴𝑖), aiming at easing the convergence of the optimization problem
(see Eqs. (8) and (9) and Vanderplaats and Salajegheh [62]).

4. Description of the application case

The single-box long-span bridge used as an application example in
this study is the same as the one adopted in Cid Montoya et al. [57]
to facilitate the interpretation of the results. A detailed description of
the model, the turbulent wind conditions, and the procedure adopted
for the buffeting analyses can be found in that reference. A short
description is presented here for completeness.

The cable-stayed bridge has a main span of 1316 m and two side
spans of 540 m, which is in the order of magnitude of the Russky or
Sutong bridges. The FEM of the structure is sketched in Fig. 2. The
deck cross-section is the well-known Scanlan’s G1 section (Scanlan and
Tomko [63]), similar to the deck cross-section of the main span of
the Great Belt Bridge and described in Fig. 3, where the deck shape
variables, width 𝐵 and depth 𝐻 , are defined in terms of their relative
variation 𝛿𝐵 and 𝛿𝐻 , respectively. A maximum variation of ±10% is
enabled for both shape design variables, resulting in geometries with
𝐵/𝐻 ratios ranging from 5.84 to 8.73, and fairing angles 𝜃𝑇 between
35.70◦ to 92.63◦. The aerodynamic response of the deck cross-sections
included in the shape design domain is obtained from a surrogate model
developed in Cid Montoya et al. [37]. In that study, the accuracy of the
force coefficients obtained by 2D URANS CFD simulations, the perfor-
mance of the QS formulation in estimating the flutter derivatives, and
the accuracy of the full surrogate-based numerical procedure to assess
the flutter velocity as a function of the deck shape were successfully
validated using experimental data obtained from sectional model wind
tunnel tests of three different deck geometries. The Kriging surrogate
has two inputs, which are the deck shape variables 𝐻 and 𝐵, and
six outputs, namely the three force coefficients and their slopes that
are required to apply the quasi-steady theory to estimate the flutter
derivatives and admittance function. The surrogate model was built
from 15 samples consisting of CFD simulations using 2D URANS and
Menter’s 𝑘−𝜔 SST turbulence model that provides the force coefficients
at wind angles of attack 𝛼 = 0◦ and 𝛼 = 2◦. This information can be used
to calculate the slopes of the force coefficients at 𝛼 = 0◦ of streamlined
deck cross-sections.

5. Buffeting response of the optimum structural bridge design
configuration

The buffeting responses of the optimum structural designs are stud-
ied in this section in order to be later used to interpret the optimum
aero-structural designs that will be reported in Section 6.

5.1. Structural optimization problem

The structural optimization problem is formulated as outlined in
Section 3, without considering the buffeting constraints (Eqs. (10) to
(12)), and assuming that the shape design variables that define the
geometry of the deck cross-section (𝐵 and 𝐻) are fixed. Consequently,
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Fig. 7. BARS of the maximum responses for the optimum designs in ∗ at wind speed 𝑈 = [15, 30, 45, 60] m∕s compared with a set of limits defined in Section 5.4 for each
constraint. On the right side (c, f, i, and l), the related constraints as formulated in Eqs. (10) to (12) are projected over ∗, along with the values of the objective function 𝐹
(Eq. (1)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the formulation of the objective function can be rewritten for the
structural optimization problem as

min𝐹 (𝑡,𝐀,𝐍) = 𝐴𝑥 (𝑡)𝐿𝐷 + 𝑃𝑠

40
∑

𝑖=1
𝐴𝑖𝐿𝑠,𝑖, (13)

subject to

𝑔𝑆𝑡𝑟𝑟 (𝐱) =
𝑅𝑟

𝑅𝑟,max
− 1 ≤ 0, 𝑟 = 1,… , 1104. (14)

where 𝑔𝑆𝑡𝑟𝑟 represents all the structural design constraints included
in Eqs, (2) to (9), being 𝑟 the number of each structural constraint, 𝑅𝑟

the structural response and 𝑅𝑟,max the maximum value allowed for each
response.
8

t

5.2. Optimum shape design space ∗

The structural optimization problem defined above makes it pos-
sible to obtain, for a given deck shape geometry (fixed values of the
deck shape variables 𝐵 and 𝐻), the optimum structural values of the
other design variables 𝑡, 𝐀 and 𝐍. This approach can be applied to any
deck shape geometry included in the shape design space , namely the
esign domain involving the shape design variables and their lower
nd upper bounds. The result of this procedure is a new design space
omposed by the optimum values of the design variables 𝑡∗, 𝐀∗ and 𝐍∗

or each pair of values of 𝐵 and 𝐻 , which is defined as optimum shape
esign space ∗ (Cid Montoya et al. [38]). Therefore, the responses
f the structural optimum bridge as a function of the shape design
ariables 𝐵 and 𝐻 can be represented in this new design space. Note
hat the symbol ∗, when referred to any property or design variable
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Fig. 8. Evolution of relevant parameters in the optimization process: (a) objective function 𝐹 (Eq. (1)) and deck thickness 𝑡; and (b) deck width 𝐵 and depth 𝐻 , and the active
buffeting constraint 𝑔�̈�45 (RMS of vertical accelerations at wind velocity 𝑈 = 45m∕s, see Eq. (11)). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 9. Optimum bridge design: (a) initial (gray) and optimum (black) deck shape and size design; and (b) initial and optimum design of the cross-section area of each stay.
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f the bridge design, denotes the result of the structural optimization
rocess, or in other words, the optimum structural design.

.3. Dynamic responses of the bridge over ∗

The natural frequencies of the initial and optimum structural design
onsidering the G1 baseline deck cross-section (𝐵 = 40m and 𝐻 =
5.6m, see Section 4) are shown in Table 1, while the mode shapes of
the optimum are plotted in Fig. 4.

Fig. 5 shows a subset of response surfaces of relevant properties over
∗, including the objective function 𝐹 , the deck plate thickness 𝑡, the
tructural mass moment of inertia 𝐼𝑠𝑀 , and three representative natural
requencies: the first lateral mode 𝑓1 ‘‘L1s’’, and the most relevant
orsional modes 𝑓11 ‘‘T1s & L3s’’ and 𝑓12 ‘‘T1s’’ (see Fig. 4).

.4. Buffeting responses over ∗: Interpretation from the designer’s perspec-
ive

The influence of the deck shape on the buffeting response is ana-
yzed in this Section. Buffeting responses are represented as response
urfaces as a function of the deck shape, defined as buffeting accel-
ration response surface (BARS). These responses in ∗ are the ones
hat the optimization algorithm will find in the last stages of the con-
ergence process when approaching the neighborhood of the optimum
esign. Therefore, they can be used to interpret the optimum designs
btained and the design decisions taken by the optimization algorithm
n the complete aero-structural optimization problem, particularly for
9

he shape design variables 𝐵 and 𝐻 . c
Fig. 6 shows the accelerations of the three DoF at midspan along
ith the maximum acceleration found along the deck for each DoF.

t must be remarked the sensitivity of the buffeting response with the
eck width 𝐵, as it was reported in detail in Cid Montoya et al. [57]
or the initial design of the bridge. Similar tendencies are found here
n ∗, where the vertical accelerations are higher for narrow decks,
hile wider deck designs produce higher torsional accelerations. On

he other hand, the lateral accelerations are irrelevant in the chosen
esign domain.

Finding the area of the design domain where the responses surpass
he values adopted as the maximum allowed accelerations permits the
dentification of the feasible and unfeasible domain regions. The limit
alues adopted for the buffeting accelerations were selected based on
nformation found in the literature. A relevant source is the Interna-
ional Organization for Standardization (ISO), particularly the code
SO 2631 [45], where maximum accelerations for human discomfort
re provided. Also, in the specifications for the Messina Strait Bridge
Stretto di Messina [48]), a set of requirements to verify the stress
nd fatigue strength of the deck members were set for buffeting ac-
elerations under turbulent winds characterized in terms of turbulence
ntensity as 𝐼𝑢 = 7%, 𝐼𝑣 = 0.75𝐼𝑢 and 𝐼𝑤 = 0.50𝐼𝑢. All these requirements

are summarized in Table 2.
Hence, the limit values adopted are �̈�𝑅𝑀𝑆,𝑚𝑎𝑥 (𝑈 ) =

0.005, 0.04, 0.15, 0.30] m∕s2 for the lateral accelerations, �̈�𝑅𝑀𝑆,𝑚𝑎𝑥 (𝑈 ) =
0.0175, 0.12, 0.3, 0.65] m∕s2 for the vertical response, and for the tor-
ional response �̈�𝑒𝑞,𝑅𝑀𝑆,𝑚𝑎𝑥 (𝑈 ) = [0.005, 0.05, 0.15, 0.35] m∕s2. These
imit values adopted for the buffeting accelerations correspond to the
ollowing wind intervals: 𝑈1 = [0 − 15] m∕s, 𝑈2 = [15 − 30] m∕s, 𝑈3 =
30 − 45] m∕s and 𝑈4 = [45 − 60] m∕s. The buffeting responses are cal-

ulated for the maximum velocity of each range 𝑈 = [15, 30, 45, 60] m∕s
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Fig. 10. Subset of displacement design constraints: (a) shows all the constraint of top of the tower for several load cases (Eqs. (3) and (5)); and (b) compares the convergence of
hree relevant stays area and the displacements design constraints of the tower and the deck and midspan. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
Table 4
Summary of design constraints considered in the aero-structural optimization problem.

Type Location Limit constraint value # RPa Load casesb # constraints

Displacement under self weigth Deck nodes 𝑤max = 0.05m 38 𝑆𝑊 (1) 38
Tower top nodes 𝑢max = 0.05m 2 𝑆𝑊 (1) 2

Displacement under live loads
Lateral spans 𝑤max = 540m∕ 500 = 1.080m 18 𝐿 (4) 72
Main span 𝑤max = 1316m∕ 500 = 2.632m 20 𝐿 (4) 80
Tower top nodesc 𝑢max = 314.4m∕ 600 = 0.524m 2 𝐿 (4) 8

Stress under self weight and live loads
Deck top fiber 𝜎max = 200MPa 88 𝐿 (4) 352
Deck bottom fiber 𝜎max = 200MPa 88 𝐿 (4) 352
Stays 𝜎max = 800MPa 40 𝑆𝑊&𝐿 (5) 200

Buffeting loads: RMS of acceleration
Deck lateral accel. �̈�max

𝑅𝑀𝑆 (𝑈 ) = [0.005, 0.04, 0.15, 0.30] m∕s2 171 𝐵𝑈 (4) 684

Deck vertical accel. �̈�max
𝑅𝑀𝑆 (𝑈 ) = [0.0175, 0.12, 0.3, 0.65] m∕s2 171 𝐵𝑈 (4) 684

Deck torsional accel. 𝑍𝑒𝑞
max
𝑅𝑀𝑆 (𝑈 ) = [0.005, 0.05, 0.15, 0.35] m∕s2 171 𝐵𝑈 (4) 684

Total number of design constraints 𝑆𝑊&𝐿&𝐵𝑈 3156

aRP = Response points where the response of the bridge is controlled by a design constraint.
b𝑆𝑊 = self weight, 𝐿 = live loads, 𝐵𝑈 = buffeting loads for each wind velocity value 𝑈 , (#) = total number of load cases.
cThe height of the tower used in this constraint is related to the location of the backstay anchorage, which is 3 m below the top of the tower.
and are checked against the maximum accelerations allowed for each
wind velocity.

Fig. 7 shows the whole picture of the buffeting accelerations design
constraints for the set of wind velocities under study 𝑈 =
[15, 30, 45, 60] m∕s. In this figure, the values shown are the maximum
RMS of accelerations along the entire deck. They are represented along
with the values of the objective function 𝐹 (Eq. (1)) obtained in ∗

(see Fig. 5). Since lateral constraints are not active (see the low values
reported in Fig. 6), only vertical and torsional responses are shown. The
constraints projections over the design domain are plotted in Fig. 7 (c),
(f), (i), and (l) for each wind velocity 𝑈 . It is worth noting that the
constraints for low values of wind velocity, namely 𝑈 = [15, 30] m∕s,
do not significantly reduce the feasible design region, which only is
constrained by the torsional response for high values of 𝐵. For cases
𝑈 = [45, 60] m∕s, both vertical and torsional responses limit the feasible
design domain, being the case 𝑈 = 45m∕s the most restrictive one,
although the case 𝑈 = 60m∕s is more demanding for low values of
𝐻 . In general, the vertical acceleration design constraint bounds the
feasible design domain for low values of 𝐵, while the torsional design
constraint prevents designs with large values of 𝐵.

The opposite trends in the vertical and torsional buffeting responses
as a function of 𝐵 and also 𝐻 , lead to a trade-off situation in terms
of design decisions, according to the values adopted as limits for the
design constraints. Also, the desired goal of reducing the objective func-
tion 𝐹 (Eq. (1)), leads to another trade-off between these constraints
and 𝐹 , which highlights the need for adopting optimization procedures
to find the most efficient design.
10
6. Aero-structural optimization of the bridge considering shape
and size design variables

6.1. Definition of the problem

The formulation of the aero-structural optimization problem has
been presented in Section 3 and the application case was briefly intro-
duced in Section 4. The initial design of the design variables and the
limits of their lateral constraints, namely lower and upper bounds, are
given in Table 3, and all information related to the constraints are pro-
vided in Table 4. This table classifies the different design constraints,
provides the limit values, and indicates the number of response points
used for each constraint. It can be noted that there are three groups
of response points distributed along the deck: a set of 38 points at the
location of the stays anchorages used to control the deck displacements
(see Eq. (2)), a set of 88 control points to check the stress levels along
the deck (Eqs. (6) and (7)), and another set of 171 response points
uniformly distributed to evaluate the RMS of accelerations at four
wind velocities (Eqs. (10) to (12)). The set of gravitational load cases
includes the self weight (SW) of the structure and four live load cases
(𝐿𝑙 , 𝑙 = 0,… , 3) to model some arrangements of service traffic loads on
the deck. These live loads are modeled by a uniformly distributed load
of 136 kN/m along the whole bridge in the first case (𝐿0), and along the
left, center, and right spans in the second (𝐿1), third (𝐿2), and fourth
(𝐿3) cases, respectively. The limit values adopted for the buffeting
accelerations were discussed in Section 5.4 and are also summarized
in Table 4.
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Table 5
Initial and optimum designs obtained by the aero-structural optimization.

Property Design Variation

Initial Optimum 𝛥 𝛿 [%]

General

Objective function 𝐹 [m3] 7619.200 6964.178 655.022 8.597
Volume of stays 𝑉 𝑠 [m3] 2673.290 2540.198 133.092 4.979
Percentage of stays in 𝐹 [%] 35.086 36.480 1.394 3.973
Volume of deck 𝑉 𝐷 [m3] 4945.910 4423.980 521.930 10.553
Percentage of deck in 𝐹 [%] 64.914 63.520 1.394 2.147

Stays

Backstays mean area 𝐴𝐵 [m2] 0.500 0.545 0.045 9.000
Stays mean area �̄�𝑠 [m2] 0.050 0.040 0.010 19.400
Backstay/Stay area ratio 10.000 13.524 3.524 35.236
Mean area of all stays [m2] 0.073 0.066 0.007 10.274
Mean prestressing force �̄� [MPa] 300.000 475.500 175.500 58.500

Deckd

Width 𝐵 [m] 40.000 38.327 1.673 4.183
Depth 𝐻 [m] 5.600 6.160 0.560 10.000
Plate thickness 𝑡 [cm] 2.500 2.303 0.197 7.880

𝐴𝑥 [m2] 2.064 1.846 0.218 10.562
𝐽𝑥 [m4] 41.360 44.679 3.319 8.025
𝐼𝑦 [m4] 12.516 13.761 1.245 9.947
𝐼𝑧 [m4] 288.176 239.116 49.060 17.024
Structural weight 𝑀𝑆

𝑥 per m. [T/m] 16.101 14.399 1.702 10.572
Total weight 𝑀𝑥 per m. [T/m] 24.101 22.399 1.702 7.063
Live load/Weight ratio 0.576 0.620 0.044 7.600
Structural mass moment 𝐼𝑆

𝑀𝑥
per m. [Tm/m] 2345.398 1972.661 372.737 15.892

Total mass moment 𝐼𝑀𝑥
per m. [Tm/m] 4645.398 4272.661 372.737 8.024

Dynamicsf

𝑓1 (L1s) [Hz] 0.082 0.078 0.004 4.878
𝑓5 (V1s) [Hz] 0.203 0.214 0.011 5.419
𝑓8 (V3s) [Hz] 0.351 0.355 0.004 1.140
𝑓10 (L3s & T1s) [Hz] 0.419 0.404 0.015 3.580
𝑓11 (V5s) [Hz] 0.438 0.377 0.061 13.927
𝑓12 (T1s) [Hz] 0.461 0.468 0.007 1.518
𝑓15 (V5s) [Hz] 0.518 0.495 0.023 4.440
𝑓16 (L3s & T1s) [Hz] 0.533 0.513 0.020 3.752
𝑓17 (V5s) [Hz] 0.622 0.608 0.014 2.251

Buffetings,a

max(�̈�RMS) [m/s2] (𝑈 = 15 m/s) 0.0022s86 0.0019s86 0.0003 12.542
max(�̈�RMS) [m/s2] (𝑈 = 30 m/s) 0.0175s86 0.0144s86 0.0030 17.427
max(�̈�RMS) [m/s2] (𝑈 = 45 m/s) 0.0604s86 0.0468s86 0.0135 22.441
max(�̈�RMS) [m/s2] (𝑈 = 60 m/s) 0.1492s56 0.1121s86 0.0371 24.859

max(�̈�RMS) [m/s2] (𝑈 = 15 m/s) 0.0127s82 0.0143s9 0.0016 12.662
max(�̈�RMS) [m/s2] (𝑈 = 30 m/s) 0.0909s81 0.1033s9 0.0124 13.681
max(�̈�RMS) [m/s2] (𝑈 = 45 m/s) 0.2525s81 0.2999s9 0.0474 18.750
max(�̈�RMS) [m/s2] (𝑈 = 60 m/s) 0.4872s79 0.6246s8 0.1374 28.202

max(�̈�RMS) (�̈�𝑒𝑞) [m/s2] (𝑈 = 15 m/s) 0.0044s86 0.0040s86 0.0003 7.835
max(�̈�RMS) (�̈�𝑒𝑞) [m/s2] (𝑈 = 30 m/s) 0.0403s86 0.0382s86 0.0021 5.303
max(�̈�RMS) (�̈�𝑒𝑞) [m/s2] (𝑈 = 45 m/s) 0.1420s86 0.1377s86 0.0043 3.043
max(�̈�RMS) (�̈�𝑒𝑞) [m/s2] (𝑈 = 60 m/s) 0.3342s86 0.3338s86 0.0005 0.139

f The identificative number of the frequencies shown in this table are the numbers reported in Table 1.
d The properties given for the deck are per unit of length (meter).
s The sections or control points where the maximum buffeting response is found along the deck are indicated for each response. Only the section number on the left side of the
bridge is provided for simplicity. Note that midspan correspond to section #86, since 171 control points are considered.
a The buffeting active constraint is indicated in bolt. Note that the active section is #163, the symmetric control point of #9 (see Fig. 12 (d)).
6.2. Optimization results

This section reports the results of the aero-structural optimization
design problem considering the set of constraints described in Table 4.
The modifications carried out by the optimization algorithm are sum-
marized in Table 5, where the properties of the initial design are
compared with the ones of the optimum design, and the relative and
absolute variations are provided. Also, a summary of the variations
of the main design variables, properties and design constraints of the
bridge are reported in Figs. 8 to 12. The optimization algorithm has
been able to reduce the amount of material of the bridge, namely
the objective function 𝐹 , by 8.6%, which would allow a noticeable
eduction in terms of the economic cost of the structure. This was
chieved mainly by the reduction in the volume of the deck, finding
more efficient deck shape that enables the reduction of the deck

late thickness. The convergence of the objective function along the
ptimization process is given in Fig. 8 (a), where the distribution of
aterial between the deck and the stays is indicated. It can be noted
11
in this figure the important role played by the deck thickness in the
objective function value along the optimization process.

Fig. 9 summarizes the changes adopted for the shape and size
design variables. It can be seen that the depth of the deck cross-section
is increased to the upper bound, given its important contribution to
the stiffness properties of the deck girder, and the optimum deck is
slightly less wide. This deck design keeps the aeroelastic responses
below the design threshold as shown in Fig. 8 (b) for the RMS of vertical
accelerations. The cross-section area of most of the stays of the bridge
is reduced, and the uniform distribution of cross-section area adopted
in the initial design is modified, providing more efficient distribution
of cross-section areas, as shown in Fig. 9. The cross-section area of
the backstays and the stays next to the main span is increased, given
the important role played by these stays to improve the performance
of the bridge against gravitational loads. This is shown in Fig. 10
(b), where the convergence of the cross-section area of three relevant
stays are compared with the structural design constraints related to
the horizontal displacement at the top of the tower and the vertical
displacements of the deck.
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Fig. 11. Subset of the most representative structural responses and design constraints. On the left side (a, c, e, and g), the values of the structural design constraints for the initial
nd optimum design are compared. On the right side (b, d, f, and h), the structural behavior of the optimum design obtained with the FEM with a deformation scale factor 50
s provided. Figures (a) and (b) show the deck displacements for load case 𝐿2 (Eq. (4)); (c) shows the deck bottom fiber stress constraint for load case 𝐿0 (Eq. (7)); (d) shows
he deck axial load for load case 𝐿0, which condition the top and bottom fiber stress of the deck; and (e), (f), (g), and (h) shows the stress in the stays for load cases 𝐿2 and 𝐿3
Eq. (8)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
c
Figs. 10 and 11 show the values of a subset of structural
erformance-related constraints (see Eqs. (2) to (9)), which depend on
he gravitational load cases described in Section 6.1. It can be seen in
ig. 10 that the constraints related to the horizontal displacement of
he top of the towers (Eqs. (3) and (5)) are only active for the load
ase 𝐿2, and close to be active for the self-weight load case. Regarding
he vertical displacements of the deck (Eq. (4)), it is shown in Fig. 11
a) that this constraint is active in the main span for the load case 𝐿0.
lso, the deck stress constraints (Eqs. (6) and (7)) play an important
ole in the optimization since they constraint the admissible value of
12

he deck plate thickness. It can be observed in Fig. 11 (c) that the stress
onstraint at the bottom fiber of the deck for load case 𝐿0 is active
in the neighborhoods of the towers. This is the classical behavior of
cable-stayed bridges, since the cable-supporting system generates high
normal stress levels in the deck position next to the towers, as described
in Fig. 11 (d). On the other hand, Fig. 11 (e) and (g) show the values
of the stays’ stress constraints (Eqs. (8) and (9)) for loads 𝐿2 and 𝐿3,
respectively. For these constraints, the three load cases 𝐿1, 𝐿2 and 𝐿3
are active at different locations of the deck, highlighting the need for
considering all the relevant gravitational load cases in the optimization
problem, as well as a relatively large number of control points along

the deck.
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Fig. 12. Buffeting RMS of accelerations constraints (Eqs. (10) to (12)) for the initial and optimum designs. Figures (a), (c), and (e) shows the buffeting responses versus the wind
speed. Figures (b), (d), and (f) show the buffeting constraint along the deck for wind velocity 𝑈 = 45m∕s.
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It can be observed in Figs. 10 and 11 that kinematic and stress
onstraints at the deck, towers, and stays are active. It is important
o remark that all constraints must be considered in the optimization
rocess in order to achieve optimum designs with an adequate perfor-
ance level for all responses, independently of their nature. In general,

he behavior of the bridge under the gravitational loads is similar to the
pplication case reported in Cid Montoya et al. [38].

Fig. 12 reports the design constraints related to the buffeting accel-
rations formulated in Eqs. (10) to (12) with the limit values indicated
n Table 4. Fig. 12 (a), (c), and (e) show the bridge buffeting responses
n terms of RMS of accelerations at midspan and the maximum response
ound along the deck as a function of the wind velocity for both initial
nd optimum designs. Also, the adopted limit values reported in Table 4
nd the highest value of the normalized constraints (Eqs. (10) to (12))
re indicated. The value of these normalized constraints along the deck
re shown in Fig. 12 (b), (d), and (f) for wind velocity 𝑈 = 45m∕s.
t is shown in Fig. 12 (d) that the design is driven by the vertical
cceleration constraint for 𝑈 = 45m∕s at the lateral spans, although
his constraint is also close to getting active at the main span. The role
f the vertical constraint for 𝑈 = 45m∕s at the optimum design and the
13

ptimization process is highlighted in Fig. 8 (b), whose convergence is
lotted along with the shape design variables, showing the influence of
his constraint on both 𝐵 and 𝐻 design variables. The fact of having the
aximum response at different locations along the deck highlights the
eed for imposing a large number of design constraints along the deck
n the optimization process in order to guarantee that the acceleration
t any location along the deck never exceeds the design limit, as
ormulated in Eqs. (10) to (12). Furthermore, other constraints are close
o get active at the optimum design, such as the vertical constraint for
= 60m∕s, and torsional constraints for 𝑈 = 45m∕s and 60m∕s. The

orsional response shows a one-wave response type, which means that
he midspan constraint is representative of the buffeting performance
or this DoF. On the other hand, it is shown that the lateral constraints
re irrelevant for the definition of the optimum design.

In order to better understand how the buffeting design constraints in
erms of RMS have been modified throughout the optimization process,
t is interesting to analyze the changes in the PSDs of the buffeting
ccelerations. Fig. 13 compares the PSDs of vertical accelerations for
he initial and optimum designs at midspan (control point #86) and
ontrol point #163 (symmetric of control point #9), which is the deck
ross-section where the vertical buffeting constraint is active at 𝑈 =

45m∕s, as shown in Fig. 12 (d). The vertical PSD at midspan (section
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Fig. 13. PSDs of vertical accelerations at wind velocity 𝑈 = 45m∕s for the initial and optimum designs: (a) and (b) show the PSD value for each deck section and frequency;
(c) compares the PSD at midspan (section #86); and (d) compares the PSD at section #163 (symmetric of #9). The most influential natural frequencies of the initial design are
indicated (see Table 1). Values of RMS of accelerations in m∕s2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 14. PSDs of horizontal accelerations at wind velocity 𝑈 = 45m∕s: (a) shows a comparison of the initial and optimum design at midspan (section #86); and (b) shows the
value of the PSD for each deck section and frequency value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
#86) is slightly modified along the optimization process, particularly
the peaks related to modes ‘‘V1s’’, ‘‘V3s’’, and ‘‘V5s’’, as shown in Fig. 13
(c). This leads to a moderate increase in the value of the vertical RMS,
which has no influence on the design optimization. However, at deck
control point #163, the maximum allowed value of RMS is reached, as
it can be seen in Fig. 13 (d), and therefore the constraint is active, as
14
shown in Fig. 12 (d). It can be observed that the PSD of control point
#163 is different from the PSD at midspan, where the main symmetric
vertical modes are more influential. Both the symmetric vertical modes
(indicated in black color) and modes ‘‘V2a’’, ‘‘V4al’’ and ‘‘V7sl’’ (in red
color) are influential on the response. This is so because these last three
modes present a one-wave response over the lateral span, as shown in
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Fig. 15. PSDs of torsional accelerations at wind velocity 𝑈 = 45m∕s: (a) shows a comparison of the initial and optimum design at midspan (section #86); and (b) shows the value
of the PSD for each deck section and frequency value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. In the initial design, modes ‘‘V5s’’ and ‘‘V4al’’ are coupled, giving
place to the shape shown in Fig. 12 (d) (see Fig. 4). At the optimum
design, modes 8, 9, and 10 are coupled since they are all vertical modes
and have very similar frequencies (see Table 1), giving place to the
dominant peak at 0.355 Hz shown in Fig. 13 (d), which can be clearly
identified in the lateral spans in Fig. 13 (b).

However, while the vertical response of the optimum design is
higher than the one obtained for the initial design, the RMS of lateral
and torsional of accelerations have been reduced after the optimization
process. It must be noted that the goal of the optimization algorithm is
to reduce the material of the structure, and it only modifies the bridge
design due to the buffeting responses when these design constraints
are violated. Therefore, it is not a problem that the vertical response
increases, as long as the maximum allowed value for the RMS is not
surpassed.

On the other hand, the lateral and torsional buffeting responses
decreased after the optimization, as anticipated in Fig. 12. The PSD of
lateral acceleration is dominated by the influence of the first symmetric
lateral mode at the main span (‘‘L1s’’) and the pure torsional (‘‘T1s’’)
and lateral–torsional (‘‘T1s L3s’’ and ‘‘T1s L3s’’) modes. The lateral–
torsional modes, which provide the largest contribution to the RMS,
have several waves along the deck, as shown in Fig. 14. This fact
explains the distributed response along the entire deck reported in
Fig. 12 (b). On the contrary, the PSD of torsional acceleration is only
relevant at the main span since the largest contribution to the RMS is
provided by the pure torsional mode (‘‘T1s’’), as shown in Fig. 15.

7. Discussion: Influence of the aeroelastic design constraints on
the optimum design

7.1. Sets of maximum allowed values for the buffeting design constraints

Aiming to analyze the influence of the buffeting constraints on the
deck shape design, and the ability of the deck shape variables to handle
aeroelastic constraints, four additional optimization cases have been
studied considering different sets of the maximum allowed values for
the buffeting constraints. These sets are described in Table 6. It must
be noted that Set #2 is the one previously reported in Section 6.2 (see
Table 4), and it is provided here for completeness.

7.2. Optimum aero-structural designs

The optimum designs obtained from the aero-structural optimiza-
tion, for the sets of buffeting constraints given in Table 6, are reported
in Table 7. In this table, the optimum design values obtained for the
15

a

stays are summarized by means of the backstay average cross-section
area 𝐴𝐵

o
, the average area of the other 38 stays 𝐴𝑠o, and the average

value of the prestressing forces of all the stays of the bridge 𝑁
o
. Note

hat the symbol o, when referred to any property or design variable
f the bridge, denotes the optimum aero-structural design, while the
ymbol ∗ stands for the optimum structural design, as indicated in
ection 5.2. The buffeting constraints that become active at the end
f each optimization process are also listed in Table 7. The design
onstraints related to gravitational loads present similar results as those
hown in Figs. 10 and 11.

.3. Analysis of the optimum deck geometries

The buffeting responses are mainly controlled in this particular
roblem by the deck shape design variable 𝐵, while 𝐻 takes the
aximum allowed value in all the studied cases. This is so because
igher values of 𝐻 result in stiffer and lighter deck cross-sections,
ithout noticeably worsening the aerodynamic responses.

Fig. 16 sketches the optimum geometries compared with the geome-
ry of the initial deck shape design in order to point out the differences
ntroduced by the optimization algorithm for each case. Based on the
alues adopted for each set of constraints (Table 6), it can be inferred,
n general terms, that for more demanding aeroelastic constraints, more
treamlined deck cross-sections are required, but always providing high
tiffness by increasing the deck depth, since this makes possible to
educe the deck plates thickness and consequently reduce the objective
unction. This is true while the optimum designs are located over
∗. When more demanding constraints are adopted, the optimization
lgorithm must find the balance between the deck shape and size to
btain efficient designs that fulfill all structural and aeroelastic design
onstraints, as was the case of the set #5. This will be discussed in
etail below.

.4. Interpretation from the optimum design space ∗ perspective

The relevance of the deck shape design variables in the aeroelastic
esign of long-span bridges, and their relationship with the aeroelastic
esign constraints, was introduced in the above paragraphs. Other size-
elated design variables, such as the cable-supporting system and deck
lates thickness, are controlled by the structural design constraints,
nd their optimum values (see Table 7) are in accordance with the
ptimum structural design obtained for those deck shapes, as reported
n Section 5. Hence, the optimum designs can be interpreted taking

∗
dvantage of the optimum design space  concept.
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Fig. 16. Geometry of the optimum deck cross-sections obtained for each set of
constraints reported in Table 6 (in black) compared with the initial design (in gray,
see Fig. 3).

Fig. 17 shows the optimum design space ∗ for the five sets of
constraints considered. In this figure, the objective function 𝐹 over
∗ (previously reported in Fig. 5) is represented as contour lines in
order to help to identify the most adequate designs in terms of 𝐹 .
The projections of each set of buffeting constraints over ∗ are plotted
in these figures, as explained in Fig. 7, aiming to define the feasible
and unfeasible design regions. Furthermore, the initial and optimum
designs, and the convergence of 𝐵 and 𝐻 , are shown.

In the optimization problem considering Set #1, no buffeting con-
traint is active, and the optimum design is only conditioned by struc-
ural constraints, so the optimum deck shape design is the one that
rovides the lowest value of the objective function, that is 𝐵 = 36m
nd 𝐻 = 6.16m (see Fig. 17). This design is very interesting because it
hows the kind of deck shape design that structural design constraints
emand: the highest stiffness with the lowest amount of material, with-
ut any concerns about the degree of bluffness of the deck cross-section
eometry.
16

a

On the other hand, the designs obtained when the aeroelastic con-
straints are active are commented on in the following paragraphs. They
can be compared with the design obtained from set #1 in order to
understand the role of the aeroelastic constraints in the deck shape
design.

In the case of set #2, which was previously analyzed in Section 6.2,
the optimization algorithm found the optimum design at 𝐵o = 38.327m
nd 𝐻o = 6.16m, finding a compromise between minimizing the
bjective function and accomplishing the vertical buffeting constraint
or 𝑈 = 45m∕s, as shown in Fig. 17. The optimum design was
ound after several iterations of the shape design variables around the
eighborhood of the optimum design, as is also shown in Fig. 8 (b),
here it can be seen that the width of the section plays a crucial role

o achieve the minimum value of 𝐹 without violating the buffeting
onstraint. Furthermore, the role of the active buffeting constraint to
efine the feasible design domain, and how this impacts the value of
he objective function at the optimum design, are graphically analyzed
n Fig. 18.

A similar situation is found for the set of buffeting constraints #3.
owever, the maximum acceleration values adopted in this case are
ore demanding, hence the algorithm needs to modify the deck cross-

ection to produce a more streamlined geometry (increasing 𝐵) that
educes the buffeting response, even though this implies an increase in
he value of 𝐹 (see Table 7). This situation is depicted in Fig. 19, where
t can be seen that the active aeroelastic constraint is 𝑔�̈�

60
𝑅𝑀𝑆 (𝐱∗), since

n this case the constraint at 𝑈 = 60m∕s is more demanding than at
= 45m∕s.
The optimum aero-structural designs found for the first three sets of

uffeting constraints studied so far are located over the optimum design
pace ∗. In other words, these designs are on the optimum design
urface that would be found in an structural optimization problem
ith the same structural constraints for those deck shape geometries,
s described in Section 5.2 and in Cid Montoya et al. [38]. Hence,
(𝐱o) ≈ 𝐹 (𝐱∗). However, when more demanding aeroelastic design

onstraints are adopted, the optimum aero-structural design would
eed to move away from the structural optimum surface in order to
ulfill the aeroelastic constraints, resulting in 𝐹 (𝐱o) > 𝐹 (𝐱∗). This is
he case of the optimization results obtained for sets #4 and #5.

For set #4, no feasible design region can be identified on ∗ (see
ig. 17) due to the more demanding aeroelastic design constraint.
herefore, the algorithm needs to modify all the size-related design
ariables (mainly the deck plate thickness), along with the deck shape
esign variables, to fulfill all the structural and aeroelastic require-
ents. The role of the aeroelastic constraints is graphically represented

n Fig. 20. The buffeting design constraints 𝑔�̈�
60
𝑅𝑀𝑆 (𝐱∗) and 𝑔�̈�

60
𝑅𝑀𝑆 (𝐱∗)

ver ∗ are represented in Fig. 20 (a). It is noteworthy that 𝑔�̈�
60
𝑅𝑀𝑆 (𝐱∗)

s violated in the whole shape space ∗ except in the neighborhoods of
𝐵 = +10% & 𝛿𝐻 = +10%, while 𝑔�̈�

60
𝑅𝑀𝑆 (𝐱∗) is violated for designs with

igh values of 𝛿𝐵 . On Fig. 20 (b), the optimum aero-structural design
s plotted along with the value of 𝐹 (𝐱∗) for the optimum structural
esigns on ∗. It can be seen that the objective function associated
ith the aero-structural optimal design 𝐹 (𝐱o) is larger than the value
f 𝐹 associated with the optimum structural design 𝐹 (𝐱∗) for the same
alues of the shape design variables 𝐵 and 𝐻 due to the larger thickness
equired. This is the result of the modifications made on the design to
ulfill the aeroelastic design constraints that cannot be managed only
y modifications on the deck shape variables. Hence, the optimum
ero-structural design is in this case above ∗, since 𝐹 (𝐱o) > 𝐹 (𝐱∗).

The situation reported for set #4 is even clearer at the optimum
ero-structural design obtained for the set #5. Three buffeting con-
traints are simultaneously active here (𝑔�̈�

60
𝑅𝑀𝑆 (𝐱∗), 𝑔�̈�

45
𝑅𝑀𝑆 (𝐱∗) and

�̈� 60
𝑅𝑀𝑆 (𝐱∗)), and the value of the thickness is increased (see Table 7)

ompared to the structural optimum thickness expected for that deck
hape design, that would be around 𝑡∗ ≈ 2.175 cm (see Fig. 5) while the
ero-structural optimum is 𝑡o = 2.3 cm. In this case, the increase in 𝐹
nd 𝑡 are higher than for set #4, since the requirements posed by the

eroelastic constraints are higher.
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Fig. 17. Optimum deck shape design obtained for some of the buffeting constraints set. Buffeting constraints are represented over the shape design space ∗ following the procedure
adopted in Fig. 7: lateral in green, vertical in red and torsional in blue. The initial deck shape design is indicated by a yellow square and the optimum deck shape design by a
yellow star, while the evolution along the optimization process is represented by white squares. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Table 6
Sets of values for the buffeting constraints (Eqs. (10) to (12)).

Constraint set # RMS of lateral accel. [m2/s] RMS of vertical accel. [m2/s] RMS of torsional accel. 𝑍𝑒𝑞 [m2/s]

�̈�15 �̈�30 �̈�45 �̈�60 �̈�15 �̈�30 �̈�45 �̈�60 �̈�15 �̈�30 �̈�45 �̈�60
1 0.0050 0.04 0.15 0.3 0.0200 0.15 0.350 0.75 0.0050 0.05 0.200 0.40
2a 0.0050 0.04 0.15 0.3 0.0175 0.12 0.300 0.65 0.0050 0.05 0.150 0.35
3 0.0050 0.04 0.15 0.3 0.0150 0.10 0.275 0.55 0.0050 0.05 0.150 0.35
4 0.0025 0.02 0.15 0.3 0.0200 0.10 0.250 0.50 0.0050 0.05 0.150 0.35
5 0.0050 0.04 0.15 0.3 0.0125 0.09 0.250 0.50 0.0040 0.04 0.125 0.30

The constraints active in the optimization process are indicated in bolt and underlined (see Table 7).
aSet #2 is the case analyzed in Section 6 and it is included here as a reference.
Table 7
Subset of optimum values of the main design variables for the aero-structural optimization considering the set of constraints reported in Table 6.

Constraint Set # Iter. 𝐹 o [m3] 𝐵o [m] 𝐻o [m] 𝑡o [cm] 𝐴𝐵
o

[m2] 𝐴𝑠
o

[m2] 𝑁
o

[MPa] Active buffeting constraintsb

1 57 6937.02 36.000 6.160 2.407 0.5412 0.0394 490.3 None
2a 81 6964.18 38.327 6.160 2.303 0.5451 0.0403 475.5 �̈�𝑙

45

3 68 6998.57 40.536 6.160 2.209 0.5410 0.0409 456.0 �̈�𝑙
60

4 55 7038.14 42.462 6.160 2.153 0.5395 0.0397 453.6 �̈�𝑙
60

5 79 7306.71 41.438 6.160 2.290 0.5160 0.0423 443.4 �̈�𝑙
60 , �̈�

𝑚
45 & �̈�𝑚60

aSet #2 is the case analyzed in Section 6 and it is included here as a reference.
b𝑤 = vertical response, 𝜃 = rotational response, 𝑙 = active constraint at lateral span, 𝑚 = active constraint at main span. The number indicates the wind velocity of the active
constraint.
7.5. Identification of three different types of aero-structural shape optimiza-
tion problems

The behavior of the optimization algorithm for different sets of
design constraints limit values has been discussed in the previous
17
sections. Based on the information provided by the structural optimum
shape space ∗ and the similitude or differences between the aero-
structural and purely optimum structural designs, three different types
of aero-structural shape optimization problems can be identified, which
are conceptually described below:
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Fig. 18. Interpretation of the optimum design obtained for Set #2. The maximum RMS of the vertical acceleration at 𝑈 = 45m∕s (Eq. (11)) is depicted to show how it conditions
the optimum value of the objective function 𝐹 (𝐱) (Eq. (1), Fig. 5). It must be noted that Figure (a) is rotated 90◦ to facilitate its interpretation.
Fig. 19. Interpretation of the optimum design obtained for Set #3. The maximum RMS of vertical acceleration at 𝑈 = 60m∕s (Eq. (11)) is depicted in Figure (a) to show how it
conditions the optimum value of the objective function 𝐹 (𝐱) (Eq. (1), Fig. 5) in Figure (b).
Fig. 20. Interpretation of the optimum design obtained for Set #4: (a) shows the most relevant aeroelastic design constraints (𝑔�̈� 60
𝑅𝑀𝑆 (𝐱∗) and 𝑔�̈� 60

𝑅𝑀𝑆 (𝐱∗)) over ∗, while (b) shows the
value of 𝐹 (𝐱o) obtained in the aero-structural optimization compared with the value of 𝐹 (𝐱∗) of the optimum structural designs. The difference is expressed as 𝛥𝐹 = 𝐹 (𝐱o)−𝐹 (𝐱∗).
• Type I: Aeroelastic constraints are not active at the optimum.
Only the structural constraints are active. In this case, the aero-
structural optimum deck shape corresponds to the deck geometry
with the lowest value of the objective function in ∗ (see Fig. 17).
Hence, the optimum aero-structural design will be the same as
the optimum structural design considering the same deck shape,
18
therefore 𝐹 (𝐱o) ≈ 𝐹 (𝐱∗). This was the case of the optimiza-
tion problem considering the set #1 of design constraints (see
Table 6).

• Type II: Aeroelastic and structural constraints are both active and
the optimum aero-structural design is on ∗. In this situation,
one or more aeroelastic constraints are active at the optimum
design, and they are controlled mainly by the deck shape design
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Fig. 21. Identification of different types of aero-structural optimization problems
among the five cases studied in Cid Montoya et al. [38]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

variables. The optimum design is similar to the one that would
be obtained conducting an structural optimization considering the
deck cross-section as a fixed parameter, since the optimum aero-
structural design is on ∗. Hence, 𝐹 (𝐱o) ≈ 𝐹 (𝐱∗). The optimum
deck cross-section will be the one with the lowest value of 𝐹 in
the feasible design regions over ∗, or, in other words, where the
aeroelastic constraints are not violated 𝑔𝑎𝑒 ≤ 0 (see Fig. 17). This
was the case of the optimization problem solved for sets #2 (see
Fig. 18) and #3 (see Fig. 19).

• Type III: Aeroelastic and structural constraints are both active and
the optimum aero-structural design is above ∗. Hence, the opti-
mization algorithm needs to use all the available design variables
in the problem to accomplish the aeroelastic requirements. The
optimum deck shape is the one that makes it possible to reach
a design with the lowest objective function value that fulfills
the aeroelastic constraints, and the most effective deck shape
design to achieve this goal is the one where the value of 𝑔𝑎𝑒 is
the lowest so the size design variables are as low as possible.
Consequently, the bridge optimum design will be different from
the structural optimization considering the deck cross-section as a
fixed parameter, since the size variables are adjusted to fulfill all
aeroelastic design constraints. This can be appreciated in Fig. 20,
where the optimum aero-structural design 𝐹 o is above the value
of 𝐹 ∗ for the designs in ∗. Therefore, 𝐹 (𝐱o) > 𝐹 (𝐱∗). Examples of
Type III are sets #4, where only one aeroelastic design constraint
is active at the optimum (see Fig. 20), and #5, where three
aeroelastic constraints are simultaneously active for the optimum
design.

The same pattern can be identified in the results reported in
id Montoya et al. [38], where the aero-structural optimization was
erformed considering flutter as aeroelastic design constraint and five
ifferent values of minimum flutter velocity were imposed: 𝑈𝑓,min =
110, 115, 120, 125, 130] m∕s. This is represented in Fig. 21, where the

aero-structural optimum designs (black dots) are compared with the
flutter velocity response surface over ∗ (gray surface), and the con-
straint limit for each case in terms of minimum flutter velocity (hori-
zontal flat planes in gray, red, blue and black). The first two examples
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𝑈𝑓,min = 110m∕s and 115m∕s) can be classified as Type I, since
𝑓 (𝐱o) ≈ 𝑈𝑓 (𝐱∗) ≈ 118.8m∕s > 𝑈𝑓,min. The situation for the application
xamples considering 𝑈𝑓,min = 120m∕s and 125m∕s corresponds to Type
I, since the flutter constraint is active at the optimum, and 𝑈𝑓 (𝐱o) ≈
𝑈𝑓 (𝐱∗) ≈ 𝑈𝑓,min. The last example, 𝑈𝑓,min = 130m∕s, can be classified as
Type III, hence, 𝑈𝑓 (𝐱o) ≈ 𝑈𝑓,min > 𝑈𝑓 (𝐱∗), since the algorithm required
o increase to deck plate thickness to increase the flutter velocity and
each the minimum imposed value.

. Concluding remarks

This paper discussed the tailoring of deck shape design variables
o mitigate aeroelastic responses of bridges using aero-structural opti-
ization. With this aim, an efficient numerical design framework was

ntroduced to carry out the aero-structural optimization of bridges with
treamlined decks considering structural and buffeting constraints. The
ethodology includes deck shape design variables as well as the size

elated design variables. It permits the application of parallelization
echniques at both the optimization and response evaluation levels,
hich makes it possible to obtain optimum aero-structural designs of

ull bridges with modest computational effort.
A long-span cable-stayed bridge has been successfully optimized,

educing the total material volume by 8.6%, while meeting all imposed
tructural and aeroelastic design constraints. This has been achieved by
ncreasing the depth, slightly reducing the width and the deck plate
hickness, and redistributing the stays’ cross-section area along the
eck. In this case study, it has been found that the deck shape design
s determined mainly by its width, since the fairing angle of the deck
ross-section is very sensitive to the value of this deck shape variable,
nd consequently 𝐵 controls the aerodynamic responses. Particularly,
oth the vertical and torsional buffeting RMS of accelerations are very
ensitive to the value of 𝐵, and therefore the optimization algorithm
ses this shape variable to accomplish the aeroelastic requirements.

Moreover, the relationship between the aeroelastic design con-
traints and the aero-structural optimum deck shape designs has been
nalyzed by optimizing the bridge adopting different sets of thresh-
lds in the aeroelastic design constraints. Different results have been
btained for each case studied and it has been found that the role of
he deck shape design variables may change depending on the level
f demand posed by the aeroelastic design constraints. Three different
ypes of aero-structural optimization problems have been identified,
here the optimization algorithm manages the design variables and
esign constraints in different ways. Hence, a classification of three
ifferent aero-structural optimization problems has been proposed.
he implication of the concept derived from this classification can be
eneralized for other wind-resistant design problems involving shape
esign variables.

Future research will address the development of a comprehen-
ive aero-structural optimization framework including all aeroelastic
esponses that may impact the bridge stability and performance, includ-
ng flutter, nonlinear aerostatic stability, buffeting, and VIV. Further-
ore, additional advanced numerical frameworks must be developed

uilding upon the one proposed in this study to deal with the nonlinear
eroelastic effects that can be observed in bluff body aerodynamics.

RediT authorship contribution statement

M. Cid Montoya: Conceptualization, Methodology, Software, For-
al analysis, Writing – original draft, Writing – review & editing,
isualization. S. Hernández: Conceptualization, Supervision, Writing –
eview & editing. A. Kareem: Conceptualization, Supervision, Writing
review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.



Engineering Structures 270 (2022) 114067M. Cid Montoya et al.
Acknowledgments

M. Cid Montoya was funded by the Xunta de Galicia (Galician
regional government) and the Fulbright Scholar Program with refer-
ence ED481B2018/053. S. Hernández was funded by the Xunta de
Galicia, including FEDER funding, with reference ED431C 2017/72. A.
Kareem especially thanks NSF support under grant CMMI #1612843.
The authors fully acknowledge the support received.

References

[1] Schmit LA. Structural Design by Systematic Synthesis. In: Proceedings of the 2nd
Conference on Electronic Computation, ASCE, 1960.

[2] Schmit LA. Structural synthesis. its genesis and development. AIAA J
1981;19(10):1249–63.

[3] Hicks RM, Murman EM, Vanderplaats GN. An Assessment of Airfoil Design by
Numerical Optimization. Technical report, NASA TM-X-3092, 1974.

[4] Hicks RM, Henne PA. Wing design by numerical optimization. J Aircr
1978;15(7):407–12.

[5] Reuther JJ, Jameson A, Alonso JJ, Rimlinger MJ, Saunders D. Constrained
multipoint aerodynamic shape optimization using an adjoint formulation and
parallel computers, Part 1. J Aircr 1999;36(1):51–60.

[6] Lyu Z, Kenway GKW, Martins JRRA. Aerodynamic shape optimization in-
vestigations of the common research model wing benchmark. AIAA J.
2015;53(4):968–85.

[7] Martins JRRA, Alonso JJ, Reuther JJ. High-fidelity aerostructural design
optimization of a supersonic business jet. J Aircr 2004;41(3):523–30.

[8] Jasa JP, Hwang JT, Martins JRRA. Open-source coupled aerostructural
optimization using python. Struct Multidiscip Optim 2018;57:1815–27.

[9] Lagaros ND. The environmental and economic impact of structural optimization.
Struct Multidiscip Optim 2018;58:1751–68.

[10] Kareem A. Emerging frontiers in wind engineering: Computing, stochastics,
machine learning and beyond. J Wing Eng Ind Aerod 2020;206:104320.

[11] Bernardini E, Spence SMJ, Wei D, Kareem A. Aerodynamic shape optimization of
civil structures: A CFD-enabled Kriging-based approach. J Wing Eng Ind Aerod
2015;144:154–64.

[12] Elshaer A, Bitsuamlak G, El Damatty A. Enhancing wind performance of tall
buildings using corner aerodynamic optimization. Eng Struct 2017;136:133–48.

[13] Ding F, Kareem A. Tall buildings with dynamic facade under winds. Engineering
2020;6(12):1443–53.

[14] Li R, Xu P, Peng Y, Ji P. Multi-objective optimization of a high-speed train head
based on the FFD method. J Wing Eng Ind Aerod 2016;152:41–9.

[15] Muñoz Paniagua J, García J. Aerodynamic surrogate-based optimization of the
nose shape of a high-speed train for cross-wind and passing-by scenarios. J Wing
Eng Ind Aerod 2019;184:139–52.

[16] Horvat M, Bruno L, Khris S, Raffaele L. Aerodynamic shape optimization of
barriers for windblown sand mitigation using CFD analysis. J Wing Eng Ind
Aerod 2020;197:104058.

[17] Azevedo AFM, Adão da Fonseca A, Oliveira R. Shape optimization of a metallic
bridge (original in Portuguese: Optimizaçao da forma de uma ponte metálica).
In: Métodos Numéricos En Ingeniería, SEMI. 2002.

[18] Simões LMC, Negrão JHO. Sizing and geometry optimization of cable-stayed
bridges. Compt Struct 1994;52(2):309–21.

[19] Baldomir A, Hernández S, Nieto F, Jurado JA. Cable optimization of a long span
cable stayed bridge in La Coruña (Spain). Adv Eng Softw 2010;41:931–8.

[20] Hassan MM, Nassef AO, El Damatty AA. Determination of optimum
post-tensioning cable forces of cable-stayed bridges. Eng Struct 2012;44:248–59.

[21] Lonetti P, Pascuzzo A. Optimum design analysis of hybrid cable-stayed
suspension bridges. Adv Eng Softw 2014;73:53–66.

[22] Fabbrocino F, Modano M, Farina I, Carpentieri G, Fraternali F. Optimal prestress
design of composite cable-stayed bridges. Compos Struct 2017;169:167–71.

[23] Arellano H, Tolentino D, Gómez R. Optimum criss crossing cables in
multi-span cable-stayed bridges using genetic algorithms. KSCE J Civ Eng
2019;23(2):719–28.

[24] Simões LMC, Negrão JHO. Optimization of cable-stayed bridges subjected to
earthquakes with non-linear behaviour. Eng Optim 1999;31(4):457–78.

[25] Ferreira F, Simões L. Synthesis of three dimensional controlled cable-stayed
bridges subject to seismic loading. Compt Struct 2020;226:106–37.

[26] Ferreira F, Simões L. Optimum design of a cable-stayed steel footbridge with
three dimensional modelling and control devices. Eng Struct 2019;180:510–23.

[27] Martins AMB, Simes LMC, Negrão JHJO. Optimization of cable-stayed bridges:
A literature survey. Adv Eng Softw 2020;149:102829.

[28] Larsen A, Larose GL. Dynamic wind effects on suspension and cable-stayed
bridges. J Sound Vib 2015;334:2–28.

[29] Jurado JA, Hernández S. Sensitivity analysis of bridge flutter with respect to
mechanical parameters of the deck. Struct Multidiscip Optim 2004;27:272–83.

[30] Agar TJA. Aerodynamic flutter analysis of suspension bridges by a modal
technique. Eng Struct 1989;11:75–82.
20
[31] Katsuchi H, Jones NP, Scanlan RH. Multimode coupled flutter and buffeting
analysis of the Akashi-Kaikyo Bridge. J Struct Eng 1999;125(1):60–9.

[32] Zhang X-J. Study of design parameters of flutter stability of cable-stayed-
suspension hybrid bridges. Wind Struct Int J 2006;9(4):331–44.

[33] Argentini T, Pagani A, Rocchi D, Zasso A. Monte Carlo analysis of total damping
and flutter speed of a long span bridge: Effects of structural and aerodynamic
uncertainties. J Wing Eng Ind Aerod 2014;128:90–104.

[34] Nieto F, Hernández S, Jurado JA. Optimum design of long-span suspension
bridges considering aeroelastic and kinematic constraints. Struct Multidisc Opt
2009;39:133–51.

[35] Kusano I, Baldomir A, Jurado JA, Hernández S. The importance of correlation
among flutter derivatives for the reliability based optimum design of suspension
bridges. Eng Struct 2018;173:416–28.

[36] Sarkar PP, Caracoglia L, Haan FL, Sato H, Murakoshi J. Comparative and
sensitivity study of flutter derivatives of selected bridge deck sections, Part I:
Analysis of inter-laboratory experimental data. Eng Struct 2009;31:158–69.

[37] Cid Montoya M, Nieto F, Hernández S, Kusano I, Álvarez AJ, Jurado JA.
CFD-based aeroelastic characterization of streamlined bridge deck cross-sections
subject to shape modifications using surrogate models. J Wing Eng Ind Aerod
2018;177:405–28.

[38] Cid Montoya M, Hernández S, Nieto F. Shape optimization of streamlined decks
of cable-stayed bridges considering aeroelastic and structural constraints. J Wing
Eng Ind Aerod 2018;177:429–55.

[39] Chen W-F, Duan L. Bridge Engineering Handbook. CRC Press; 1999.
[40] Scanlan RH. Interpreting aeroelastic models of cable-stayed bridge. J Eng Mech

Division, ASCE 1987;113(4):555–75.
[41] Chen X, Kareem A. Advances in modeling of aerodynamic forces on bridge decks.

J Eng Mech 2002;128(11):1193–205.
[42] Hui CH, Ding QS, Xu YL. Buffeting response analysis of stonecutters bridge. HKIE

Trans 2005;12(2):8–21.
[43] Zasso A, Stoyanoff S, Diana G, Vullo E, Khazem D, Serzan K, Pagani A,

Argentini T, Rosa L, Dallaire PO. Validation analyses of integrated procedures
for evaluation of stability, buffeting response and wind loads on the Messina
Bridge. J Wing Eng Ind Aerod 2013;122:50–9.

[44] Lystad TM, Fenerci A, Øiseth O. Buffeting response of long-span bridges consid-
ering uncertain turbulence parameters using the environmental contour method.
Eng Struct 2020;213:110575.

[45] ISO 2631, ISO 2631. Mechanical vibration and shock - Evaluation of human
exposure to whole-body vibration. Technical report ISO, 2018.

[46] Zhu Q, Xu YL, Shum KM. Stress-level buffeting analysis of a long-span cable-
stayed bridge with a twin-box deck under distributed wind loads. Eng Struct
2016;127:416–33.

[47] Repetto MP, Torrielli A. Long term simulation of wind-induced fatigue loadings.
Eng Struct 2017;132:551–61.

[48] Stretto di Messina, Stretto di Messina. Messina Strait Bridge: Basis of design
and expected performance (original in Italian: Ponte sullo Stretto di Messina:
Fondamenti Progettuali e Prestazioni Attese per l’Opera di attraversamento).
Technical report, Stretto di Messina Report GCG.F.04.01, 2004.

[49] Larsen A, Poulin S. Vortex-shedding excitation of box-girder bridges and
mitigation. Struct Eng Int 2005;15:258–63.

[50] Diana G, Resta F, Belloli B, Rocchi D. On the vortex shedding forcing on
suspension bridge deck. J Wing Eng Ind Aerod 2006;94:341–63.

[51] Boonyapinyo V, Lauhatanon Y, Lukkunaprasit P. Nonlinear aerostatic stability
analysis of suspension bridges. Eng Struct 2006;28:793–803.

[52] Nagai M, Fujino Y, Yamaguchi H, Iwasaki E. Feasibility of a 1400 m span steel
cable-stayed bridge. J Bridge Eng ASCE 2004;9(5):444–52.

[53] Muyl F, Dumas L, Herbert V. Hybrid method for aerodynamic shape optimization
in automotive industry. Comput & Fluids 2004;33:849–58.

[54] Mooneghi MA, Kargarmoakhar R. Aerodynamic mitigation and shape optimiza-
tion of buildings: Review. J Build Eng 2016;6:225–35.

[55] Chehouri A, Younes R, Ilinca A, Perron J. Review of performance optimization
techniques applied to wind turbines. Appl Energy 2015;142:361–88.

[56] Skinner SN, Zare-Behtash H. State-of-the-art in aerodynamic shape optimisation
methods. Appl Soft Comput 2018;62:933–62.

[57] Cid Montoya M, Hernández S, Nieto F, Kareem A. Aero-structural design of
bridges focusing on the buffeting response: Formulation, parametric studies and
deck shape tailoring. J Wing Eng Ind Aerod 2020;204:104243.

[58] Kavrakov I, Morgenthal G. A comparative assessment of aerodynamic models for
buffeting and flutter of long-span bridges. Engineering 2017;3(6):823–38.

[59] Martins JRRA, Lambe AB. Multidisciplinary design optimization: A survey of
architectures. AIAA J 2013;51(9):2049–75.

[60] Scanlan RH. The action of flexible bridges under wind, II: Buffeting theory. J
Sound Vib 1978;60(2):201–11.

[61] Diana G, Stoyanoff S, Aas-Jakobsen K, Allsop A, Andersen M, Argentini T,
Cid Montoya M, Hernández S, Jurado JA, Katsuchi H, Kavrakov I, Kim H-K,
Larose G, Larsen A, Øiseth O, Omarini S, Rocchi D, Svendsen M, Wu T. IABSE
task group 3.1 benchmark results. Part 2: Numerical analysis of a 3-degree-of-
freedom bridge deck section based on experimental aerodynamics. Struct Eng Int
2020;30(3):411–20.

[62] Vanderplaats GN, Salajegheh E. New approximation method for stress constraints
in structural synthesis. AIAA J 1989;27(1):352–8.

[63] Scanlan RH, Tomko JJ. Airfoil and bridge deck flutter derivatives. J Eng Mech
Division 1971;97(6):1717–37.

http://refhub.elsevier.com/S0141-0296(22)00207-3/sb2
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb2
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb2
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb3
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb3
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb3
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb4
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb4
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb4
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb5
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb5
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb5
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb5
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb5
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb6
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb6
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb6
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb6
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb6
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb7
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb7
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb7
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb8
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb8
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb8
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb9
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb9
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb9
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb10
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb10
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb10
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb11
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb11
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb11
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb11
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb11
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb12
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb12
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb12
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb13
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb13
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb13
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb14
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb14
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb14
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb15
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb15
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb15
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb15
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb15
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb16
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb16
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb16
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb16
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb16
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb17
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb17
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb17
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb17
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb17
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb18
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb18
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb18
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb19
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb19
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb19
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb20
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb20
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb20
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb21
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb21
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb21
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb22
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb22
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb22
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb23
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb23
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb23
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb23
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb23
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb24
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb24
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb24
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb25
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb25
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb25
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb26
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb26
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb26
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb27
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb27
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb27
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb28
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb28
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb28
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb29
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb29
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb29
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb30
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb30
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb30
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb31
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb31
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb31
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb32
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb32
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb32
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb33
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb33
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb33
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb33
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb33
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb34
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb34
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb34
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb34
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb34
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb35
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb35
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb35
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb35
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb35
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb36
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb36
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb36
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb36
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb36
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb37
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb37
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb37
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb37
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb37
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb37
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb37
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb38
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb38
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb38
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb38
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb38
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb39
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb40
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb40
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb40
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb41
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb41
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb41
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb42
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb42
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb42
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb43
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb43
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb43
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb43
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb43
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb43
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb43
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb44
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb44
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb44
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb44
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb44
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb45
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb45
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb45
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb46
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb46
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb46
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb46
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb46
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb47
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb47
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb47
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb48
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb48
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb48
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb48
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb48
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb48
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb48
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb49
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb49
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb49
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb50
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb50
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb50
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb51
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb51
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb51
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb52
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb52
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb52
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb53
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb53
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb53
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb54
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb54
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb54
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb55
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb55
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb55
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb56
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb56
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb56
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb57
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb57
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb57
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb57
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb57
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb58
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb58
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb58
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb59
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb59
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb59
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb60
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb60
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb60
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb61
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb61
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb61
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb61
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb61
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb61
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb61
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb61
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb61
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb61
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb61
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb62
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb62
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb62
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb63
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb63
http://refhub.elsevier.com/S0141-0296(22)00207-3/sb63

	Aero-structural optimization-based tailoring of bridge deck geometry
	Introduction
	Aero-structural optimization framework considering shape and size design variables
	Formulation of the aero-structural optimization problem
	Description of the application case
	Buffeting response of the optimum structural bridge design configuration
	Structural optimization problem
	Optimum shape design space S*
	Dynamic responses of the bridge over S*
	Buffeting responses over S*: Interpretation from the designer's perspective

	Aero-structural optimization of the bridge considering shape and size design variables
	Definition of the problem
	Optimization results

	Discussion: Influence of the aeroelastic design constraints on the optimum design
	Sets of maximum allowed values for the buffeting design constraints
	Optimum aero-structural designs
	Analysis of the optimum deck geometries
	Interpretation from the optimum design space S* perspective
	Identification of three different types of aero-structural shape optimization problems

	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


